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Abstract - The photosensitized oxidation or singlet oxygenation of unsatu-
ra2adTiydrocarbon polymers and of their model compounds is reviewed. Cmpha-
sis is on work in this laboratory on cis and trans forms of 1,4-polylsoprene,
1,4-polybutudiene and 1,2-poly(1,4-Inexadiene), and on 1,4-poly(2,3-dimetlhyl-
1,3-butadiene) (cis/trans ratio ^.1;3). The microstructural changes which
occur in these polymers on reaction with 1 02 in solution were investigated
by infrared, I II and 13 C NMRspectroscopy, Ilia polymers were shown to yield
allylic hydroperoxides with shifted double bonds according to the Ilene"
mechanism established for simple olefins. A convenient infrared measure of
polymer hydroperoxidation was afforded by the absorbance ratio, A2 , 9/Aa , 9 =
A', Smooth correlations of A , with oxygen uptake were obtained with chloro-
phyll or methylene blue as plhotosensitizor, but Rose Bengal gave erratic
A l -02 uptake data indicative of autoxidation accompanying the hydroperoxida-
tion. The photosensitized oxidation of the above unsaturated polymers ex-
hibited zero-order kinetics, the relative rates paralleling the reactivitics
of the corresponding simple olefins towards 102 . Two other polymers, 1,2-
polybutadiene and 1,2-poly(trans-1,3-pentadiene), showed negligible reac-
tion with 1 02 , reflecting the extremely low reactivitics of their simple
olefin analogs. This work demonstrated that singlet oxygenation of unsatu-
rated polymers does not differ fundamentally from that of their low molec-
ular weight analogs; such differences as do arise are due to secondary pro-
cesses affecting the 102 -reacted. polymers. The occurrence of degradation
in singlet oxygenation of unsaturated polymers is discussed,

INTRODUCTION

During the past decade much interest has been shown in reactions of singlet oxygen ( 102 ) with
.,	 a variety of compounds, including polymers, both saturated and unsaturated (1). In fact, two

international conferences were held recently on this subject, one in Sweden in 1976 (2) and
another in Canada in 1977 (3). Important papers hearing on the reaction of 102 with unsatu-
rated polymers or their model compounds were presented there bi Rabek and Ranby (1,4,5), Ng
and Guillet (6,7), and by Chaineaux and Tanielian (8,9). Concurrently, work in this labora-
tory on the photosensitized oxidation of 1,4-polyisoprene and 1,4-polybutudiene was reported
at two meetings in the USA (10,11). Since then, additional related work has been performed by
those researchers (12-16) and by us (17). The present paper surveys this literature, with
emphasis on the spectroscopic analysis a. various unsaturated polymers before and after reac-
tion with 102 , and on the relative roactivities of such polymers towards 1 02 vis-a-vis their
simple olefinic analogs.

Interest in the photosensitized oxidation of unsaturated polymers arose from tine realization
that molecular oxygen in its lowest excited state ( 1 A

g 

102 , with energy of 22.5 kcal/mole
above the ground state, 3E ", 302), wticih is extremely reactive towards olefinic compounds
(18,19), is implicatedin gthe surface aging or oxidation of unsaturated polymeric materials
exposed to air and sunlight. The topic of singlet oxygenation of such polymers is but one
aspect of the larger subject of photodegradation, photooxidation and photostabilization of
polymers (20) which is very important from the practical standpoint. Tile photosensitized
oxidation of unsaturated polymers, to the extent that it involves 102, is assumed to yield
allylic hydroperoxides with shifted double bonds, according to the "ene" process;

I	 I	 I	 I	 I	 I

	

—C I — C2 I3	 + 102 -^ —CI C 2—C3 	 (1)

	

H	 OOH

established for simple olefins (18,19). Reaction 1 is to be distinguished from the autoxida-
tion of olefins which involves 30 2 and leads to tiro formation of allylic hydroperoxides with
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,, I 	 has been :ontr0%VI •,y :on:ermlig tilt , ItIvOl n1-n1 for reaction 1. whethe. It involves a per
rl,oxl,lt-, dl, , \t-l.11ll' tit• .un env react ton, but tilt- Con,t-nsus naw is 01.11 It involre, .1 concerted
"env" hroCC>,, lilt' ,Inglt-t o wgcn May ht- gt,neratt,d Iw nurrowave dischArgt-, ph0t0st,n••Itn:a-
;1o11 ar by %.11 • 10us :hrnnc.11 mean. 1n still.	 1lthough singlet oxvgcn caul also t,xtst in a higher
v Xctte.; ,tote t l . g • , %lth .;.. Ac 'II'mo I v), It Is generall y aiCepted th.It ;ill of tilt- :henllstr,'
Induced by ^tl. 1n solution, and es,entt.11l y .111 tlIA in tilt, gas ph,nt,, Is .lilt- to the IA 9.

 lu..

state; hence, the latter tertil (or ,tml,l y 1 0 ) .nld the terns ',Inglet ov, I Cn" have become
synonymous (al).

1 , 1 POLL ISoPRI M.

Three doubIC bond shifts are po,s1111v tot' the reattItill of 1 11 , with 1,•1 - polyi Sop role (I'IP):

kaplan and kellcher (=,) in l! 1 	prt,sentc,I evidence for tine of those shots, namely, to cxo-
mctllvlene groups (+1 in the singlet oxvgCnation of syutlCne (SQ), a hcxatsoprrnc with trans

ultern.11 double bond'. which ma y be considered a model Campound for I'll', Sv%vr.tl %var, later,
tic shou ed that trans I'll' ,Ind `'1; wer• • .hike In t-xhibitIng the three posSiblt- ,Inuhlc Inald ,hlfts,
wbIlc ca; l'II' gave mainly 1 .111d . an,l %err IIItIC ; 111 1 ).	 11 about the same time, OlaIncaux
.111d Lintel ]all ( `I ) presented Cvldvncc for all three double bond shifts in the reaction of Ill:
with d meth y l -•I-oCtent- and 4,8 1I11nCth)'I-1,8 dodCCAJIVIle, compounds which are mono- and di-

uopt • enlc nr,dCls of I'll',	 tit ill I.urr, Vg .Ind I;tII	 I: ('1 obtained CamparabIC results for 	 i
I meth y l 1 octt-nr.

Itgurc l shows the IR changv, acco111113MIng the singlet oa y genatIon of cis-I'Il', with chlort,.
pI	 lt'L1 as 1 ,1totosvIIsItI:Cr 1101.	 file malor chang. • , art, development of strong bands at

• I ,m (Will .Ind 10.3 I-m (tnuns -C11=t'Il 	 .IS it I), and Let deCrcasr of the 1:.0 - I,m hand
Ckt:110- 01 , ,Is in unl•cactt-d units .Ind In :1, 	 file broa.l but weak absorption at 11.3 I,m

l'll•1-. as ill 31 su ►lgr,t, that vwmt-thvlt,nc groups, though },resent, are not Important;
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11 l;, 1,	 IR spectra of cis-MV before t---) and after (—) CL-1 1hotosensitized oxidation,

this is consistent with the fart that the t+.d - i,m pea k (internal C-C) Lacks a shoulder at
t, .l ,.m (external C=C). 	 File shift to :,althoti h masked at 1:.0 I' m by the loss of original

C(01e1 =4011 units, is defiautely lndi:.ite d M II Nkfk, i s disused below.	 I'hr weak ;ill -,
tion at 5.8 l ,m is due to residual Cl. nn the cast film of I t, * treacted :I- PIP.	 hlien metIli lene
blue (Mk) was used is I+hOtU1eilSIti_er, the 5,9- 1.m peak was absent and another peak appearc,l
instead at t,,:' I ' M which :ould be removed by washing the film with methanol. Otherwise, the
IN spectra obtained with MR were essentially the same as that shown in Fig. 1 for CI photo-
sensIti -atlon. HoseNengal (Rkl, on the other hand, (:are rise to extraneous .absorptions at
9,3 and 9.9 ;;m (cyclic peroxides), tnlicmilig th.it sensiti-er-induced autoxidation occurred
alongside the singlet oxygenation.

It should be stressed that the II+ spectrum of 1 0 . -re.actcd cis-PIP tx1+itied by Fig, I is fun-
d.unent,illy dif ferent from the spectra of therni:ille or photochemicall y oxidi.ed :is-I'll,
which show broad intense absorption throughout the "-1_' i,m region (due to C.0 groups) which
masks the uns.ituration hu.ds of Interest.

1s shown in I'ig.	 trans -I'll' and SQ exhibit verx samil.I. IR changes as a result of Mk-photo-
sensitized oxidation (I01. 	 Similar spectra were obtainedi with cl. photosensitization, while
RR , , gain lza%e indications of autoxidati%v side reactions with trans -I'll' lout not with Sit. The
two transn 	 isopreitic compounds show not only tht • development of strong hands at :.9 and 10,3 l,m
and the di-ninution of the 11.9 - n,m hand, by analogy to ris-I'll', then also show im,ortmit ab-
sorption at 11.1 and t,.l I.M. indicative of structure 3.	 These last two hinds were previously
noted by kapl.ir, ,tad ke•Ilehei• (::l acid, in fact , the 1 0l reacted SQ shown in I ig, : is effec-
tively the hy',droperoxnde Counterpart of their SQ-monoalcohol obtained through singlet oxygen-
ation followed by reduction.

Rabek and R:inby (13) recently presented ;tit 	 spoctnim of cis-I'll' after Mk-photoscnsitn:cd
oxidation which, although similar to I'lg, 1, show's a more definite 11.3- i,m hand, and hence a
relatively larger amount of 3. lihatever the explanation for this ditference, the IR spectra
for 1 0,-reacted cis-I'll' poini to I as the miior and : mid 3 as the minor products. a qualita-
tix• e tl(stributiott snggcst:d ,list' by Ng sad Guallet (7) by cinalogy to J - methyl - 4 -uctenr,

N Convenient measure of the degree of hydroperoxidation is given by the ratio. A. y/A t,..,	 A',
,.'acre the 6.9- 1 .m hint( (CIi .• bending vibration) is an internal standard.	 The 1 0•-reacted cis-
PIP in Fig. 1, with A' = 0."6, was obtained for :inn oxygen uptake of 0 . :" 0:/monomer unit. As
shown in Fig, ;, a smooth plot of A' versus 0, uptake was obtained for cis-PIP with Mk or Cl.
as photosensitizer (10), and similar plots were obtained for trans-1'11• and SQ. Rata for RR
were erratic, often falling to the right if the curve in Iig, 3 due to autoxidative effects,
and were therefore omitted. Ti'c single data point for tetraphenylporl+hIlie as sensiti:er.
which fell nicely on the A'-O opt,ike plot, was obtained in a different laboratory (:51. An
obvious adaantAgV of this plot is that, once obtained, it affords all

	 of the hydroper-
oxnde content without recourse to chemical methods such as iodometrv.

A sample of polystyrene-hound RR (:b), ill 	 with free RR, gave rise to concurrent autoxi-
dation and singlet cxvgenation when used a. I •hotoset..iti:et• for cis- and trans PIP. Moreover,
the rates of 0 uptake by I'll, in the case of polymer-hound I;P were much lower than expected
001; on the other hand, the free and polymer-hound RR dyes gave normal singlet oxygenation
of SQ, unattended by atitoxidati ,a, and it comparable rates.	 Icidentlx	 1411, free or polymer
bound, reacts with I'll' to producc polvmeri: radicals whicli, Ii turn, ,ield peroxy radicals
.111,1 Lissom autoxidation	 1'hc rather low efficiency of the hound RN t,,r photcsensiti-ed oxi-
dation of I'll', in conti.ts; tit 	 for SQ and other low r,,lecular weight olefins (:bl, is

IN
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fIg a	 IF measure of hp.lroperoyidation 	
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in c1% I'll'. oxidation, corresponding to Fig. 1,

aliparviii1% due to the need for the substrate to diffuse atito the insoluble sensitt:er bead.
Which is much mote .Infficult for a marrow lecule than for a small nwlecule.

Figure •1 'hors the 1 11 KNIR spectrum of 1 0;-reacted cis-PIP cor responding to the IF spectrum
I	 1	 t

itt Iig. I.	 Net, resonances appear at 1.30 (CII I 	-O-), :, go (d'-t'N;-l'^), 4. 10 t-Clf-O-1 anJ

[. , 54 ppm I Cll=cll 1, While the original resonances at :.o!, 1- 01.&1 and 5,1: ppm (4 .01-) are

correspondingl y decreased,	 %nalogotl, SM changes Were observed for traits-I'll' and SQ. except
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,.tt the latter conq•ounds also showed new resonances- at •1.8-4.9 pl.m l-hl'CII:I-). 	 these IN
+IR data support the IR indication% . + f .1+1411140 bonJ shifts (t,: I In :is_I'IP, ,.nJ to i and 3 ul
Iran, I'll' and SQ1, and s tablt sh the formation of	 In all three compounds 	 the >.51 and 4.8-
t.11 ppm resonances sIgnIf% Iend t, respect i%elc, and the :.80 ppm resonance corre%ponds to
"skipped •" mrthYI cite s resulting from shift+ t,, . or ' (as 1„ 1 1 or .').	 the 10, reacted cis-10,

.

w

	

40"	 tot—,
2'

PIP (Figs. 1 anJ 4) was orkgin.1111' estimated to hau • about equal . . " ,tints of 1 and , 01th neg
ligible 3 while the 1 0 .--reacted trans-PII' llig. :1 0,1s c•:timatcd to ha%v AS. 1, :u" . and
NA t Ili + +.	 RercntI . \ 1 , and I11111ct t',Ihl prescnteJ a I II \NR spectrum of 1 0 -r:actcd cl s -
I'll' (obta ► med with poi,st,rene-baunJ 90) 01101, although otherwise simtlar to Fig. +, dls -
pl,ccd .1 definite .idd t,,MA peak at 1.8-4.9 rpm indlcatktc of some t forned fit 	 h,dro
perox ► Ji:ed ci, I'll'.

Tyri:al ^ t spectra of ',+ -ieacteJ :is-I`11`, before And after reduction, .ire shown 1. Iig, 5,
I'h40se spectra were obtained with I'I. or lilt as photosensiti_cr, but not RR. 	 [tic latter dyc pro-
,luces extrvtcous resonances .it 	 85 ppm reminI see fit of the peroxkdc'hc,lnq.croxidclalc oho I
reson.mccs At '-'0-110 rem in the It I' spectrum of thermal l> oxiJl:ed cis-I'll' l.'l, 	 Iigurc• i, is
cottslstcnt with Ilgs. 1 an,l t III 	 very little .fauhlc b,nl,l shift to .t in :is -PII' com-
pated to trans-I'll' or SQ. 	 lhus, the 113-110 ppm resonances arc markedl, weaAer in :is I'll'

(Fig. 11 than III trans-I'll' or 5Q (Ilgs, t, and ' 1 ,	 figures	 are interesting also fit pro-tIding 
1 'i data on the effect of converting a ltcdroperoxide to in alcohol group in isoprenkc

compounds: there is .tit upfield shift of 3 ppm f,-r exomethylene -arl , rn resonances tit 	 and
%Q; an,l All 	 shift of 1: ppm In :ts-PII' and I .1 ppm in bath trans-I'll` and SQ. for the
o,lvgen nearing carbon resonances. SIMIl.tr upfie1J shifts of + l_-l+ ppm were obserted for the

_^-O_ resonances kn carious t-alAll h .%Jroper, , side, ol; reduction to the :orrespon.l.ug alco-
hols (:8).
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A Fig. ?, 13C NMR spectra of 1 0;-
reacted SQ before (A) and after
(B) reduction with NaBlly. Spec-
trum A corresponds to lower solid
spectrum in Fig. Z.
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the 13 C spectra in Figs, b ant; ? reinforce the similarity of trans-PIP and SQ in their reac-
tions with 1 0-. Moreover, the resonances at 113 ppm can be assigned to the exomethylene
carbon to an internal isoprene unit, while the resonance at 114 ppm is assignable to the
corresponding caroon in a terminal isoprene unit (as in SQ). Also, the resonance at 1 ,18 ppm,
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- sociated with the carbon attached to the excmethvlene carbon, is shifted downfield by I ppm
ut both trans-1'11' and St1 upon reducing the hydrolieroxide to the alcohol.

140011, tO+1POMPS OF 1,4-POLYISOPRI:SE

Tanieltan and Chaincaux (8,9,14,15) carried out an extensive study of the R8-11hotosensitized
oxidation to methanolic solution of 4-methyl-1-octene (lk11, J,8-Jirtiath>'1-J,8-JodecaJiene
(U^7 r01, ' b-dIrwthyl-:,t.-octadtoile (14M) and =,'-dimethvl :,b-octadivne (I)WO), as I'll' muJel
compounds containing one isoprene tutit or two such units tit 	 to-tail or head-to-hcaJ
arrangement. (heir ,tudv provided further insight into the singlet ox y genation of PIP rkinomer
untts that could not he readily obtained from work kill

	 polymers themselves. For the
xl0- I 0 react ioil:

(7)

	

OOH
	

00"	 00H
MO
	

4
	 5	 6

the distribution of shifted double bonds varivd with the stereochemistn • of the starting;
olefin (Tab:v I).	 The tendency for the relative yield of the exomethylene structure t_+ to 	 de-
crease with increasing As content of the initial olefin p,11-allels the ^Ituation with cis- and
trans-I'll' coi • cerning the corresponding structures S. Ilowever, the compartson bre.ik, down with
regard to the :orrvsponding structures 5 avid _' (or 4_and j), and this is perhaps a reflection
of the ^ I.ifferent solvents used for the 1%) and PIP studies • the the other hand, the Jistribu-
tton ol'taIllCd by Ng and Guillct (',la) for the singlet oxygenation of 1,11 with mi pectfied
cis - tracts content is .&!rk,St identical to that obt ained by cis (10) for trans - I'll', but yuitc
ditferent from the distribution obtained by I'anielian and Chaineaux. It should be added that
the latter workers (151 fowid the relative reactivities of trans- and cis-W towards 1 0, to he
•1.':1.0, which agrees very well kith the corresponJing ratio of 0.5:1.0 obtained by its for
mans. and cis-I'll' (1 0 ) .

TABLE 1 Distrhution of Shitted Double Bonds in Various Isupremc
Compounds on Reaction with 101

Percent Distribution

Comtkiund
Di

14 or 1)
T ► i

15 or 21
Exo

to or 21 Ref._

IDO% trans MO 41 11 48 8
46`V trans 54 •b cis MO 53 9 38 8
25% trans. 75% cis MO 60 7 33 8
100"i cis MO 66 6 18 15

cis • trans MO 46 26 28 7. 16

trons PIP 48 26 26 10
cis PIP 37 47 6- 10

major minor minor 7. 1 6
'New estimale made for this work

1.1111, ' I 'm and ('haineaux (8,15) showed that it 	 addition of 1 0, can oc•7ur in Sit), hilt only
through the intermediacy of the moaohydroperoitide having the trisuhstitilted double hond (5),
inasmuch as the distibstituted and exomethylenr double bonds (lit 	 and p) are considerably
less reactite	 _

00H 0011 OOH

5

Ourf
uu11	 8

They also found that the trisulrstitutcd double bond in 5 was deactivated b y the allvlic 00H
group such that reaction 8 (yielding ' and R . in the rat to of IA) was about l/.o times as
fast as reaction

Fhe dii- prenic model compound. INI'll. was shown to y ield oil 	 oxygenation all six pos-
sible monohydroperoxides (9 through 14) (8). Furthernx+re, oil 	 assumption that the tricub_
stih,ted double bonds in these product, arc the only ones likely to reset with additian.il 10,,
there are nine possibl y Jili%droperoxides from 0St111 1 , of which tour were I • ositively identified



througl, ,.^i and tnree were presumed to have been formed	 9 20 and 21) an the basis that
the trihydroperoxWes .4, 25 and :n were recovered trom ext , dcd photosensitized oxidation of
IMna^ l8).	

-	 -

10 1 .

DMDD

^0.

_.O4

Hoo ^^ 
''r^^ I

O'JHJ

10

UGH

11

OOH

/	 12

HUU	 \
13

OOH

OON

HOO

15 \

HOO

HOO

18

	

\ \/) OOH

	 OOH

V ^` !1

OOH

HOO
18

	

OOH	 OOH

/ \̂,  ^

	

OOH	 OOH

\-^^ / ̂2O
OOH

	

/ HOO	 \

21
OOH

HOO
1̂22

	

OOH	 OOH

23

(9)

(10a)

(lob)

(l0c)

UH	 OH

19 -0.HUU

"14

OOH

\

20 —i	 _

HOO

L5 OOH
OOH

21 -^	 HOO	 HOO	 \

?b

In every one of the hydroperoxidized products identified, the new disubstituted double bonds,
where present, were in the trans configuration. Reactions IOa-c showed that diaddition of 10-
to the same isoprene unit is possible but onl)'to a hydroperoxidized monomer unit that con-
tains a trisubstituted double bond. However, no dihydroperoxides were obtained from DMDD in
which the diaddition of 1 0, occurred in the same isoprene unit while the other unit was left
unt^cacted. This result is in Keeping with the deactivation of a double bond by an allylic
0011 group.

Tanielian and Chaineaux also showed, using DMDD (8) and PWD (9), that the mi hanism proposed
by Kaplan and Kelleher (29) for singlet oxygenation of 1,4-polybutadiene (reaction 111 was

\

e
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OOH	 OOH

tO	 (11)

z

OOH p— O OOH

very unlikely. Thus, the dihydroperoxide 22 has a conjugated diene structure appropriate for
undergoing reaction 11, but no dihydroperoxyendoporoxide of DMDD was .:etected. Likewise, in
the singlet oxygenation of MOD:
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the dill ydroperoxide 27 (with a conjugated diene structure) was obtained in fair yield. yet it
could not he further singlet oxygenated to 

all
	 11te failure of the dihydroper-

oxides 2 2 and 27 to form endoperoxides (despite the well-known tendency for 1 0, to react with
a conjugated diene by 1,•I-cycloaddition (21)) was attributed to their aLyclic structure and to
the deactivating !ffect of the allylic 0011 groups ( 9 ). Results analogous to those of DMDD and
DMOD were also reported for MINI (ld).

1 ,4-POLYB(ITADIENE

Returning to the unsaturated polymers, we note that because of syrm,etr> • in the 1,4-polybuta-
diene (PBD) structure, only one double bond shift is possible for the 11 0., reaction with cis-
(or trans-) PBD:

—	 10	 _

OOH

A number of papers have been con.'_rned with this reaction, and many of them (1,41,22,29-33)
have noted formation of hydroperoxide groups (revealed by new absorption at 2.9 1.m in the ATR
-r transmission IR spectra of 1 0,-reacted PBD), but presented no evidence for the concomitant

double bond shift. With the aid of IR and I II and ItC NMR spectroscopy, we showed that reac-

tion i3 indeed described the photosensitized. oxidation of PRP and, moreo,f^r, that the shifted

double bonds are virtually all-trans (11).

'is indicated in Pig. 8, the singlet oxygenation of cis-ITV. with NIB ds photosensitizer, gave
rise to now strong bands at 2.9 (tlOM and 10,3 1,m (trans -CII=CH-) and a decrease of the 13.()-
Lim hand (cis -CH=CII-). Cl. photosensitization gave similar spectra, but RB again gave extra-

neous bards due to autoxidative side-reactions (11).	 IR spectra of cis.PBD, after MB-

photosensitized oxidation, were also presented elsewhere (12,13), but these do not show the

(12)
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Iig. 8. Ik spectra of cis - i'Bl1 before ( --- ) and after — 1 MB-photosensitized oxidation.

large amount of double bond shift .ident in Fig. 8.

Uthough the IR spectrum of trans - I'RU after MB -photosensiti z ed oxidation (Fig. 91 likewise dis-
play♦ the :.9- gy m ba ,id, there is no change in intensit y of the 10.3-um tranQ band nor growth of
a 14.0-;.m cis band.	 This is in accord with reaction 13 where the shifted double bonds have
only the trans configuration. The (i 3 O-um absorption is due to the C •C stretch of trans
-CH*CII-, the symmetry of which is perturbed by the allylic 01111 groups. The u.:-gym peal corre-
spunds to residual MR. Spectra similar to Fig. 9 were also presented by Rabck and Ranby (4,3:,
33).
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Fig. `-r. 1R spectra of trans-PHD before (---) and after ( —1 MR-photosensitized oxidation.

That the new disubstrtuted double bonds formed in reaction 13, starting with either cis- or
trans-I'BU, are all-trans is in keeping with the results indicated earlier for singlet oxygen-
ation of PMPP (H) as well as those for other isoprenic madel compounds (9,14,15) and various
simple low molecular weight olefins (34),

As with cis-I'll' (Fig. 3), the degree of hydroperoxidation in cis-I'BU is easily followed lly
means of the parameter A' -- A. y/A f, , (Fig. 10). Good correlations of A' with 0-1 uptake were
Obtained with MH and C1., but not RR ( 11). The single data point for tetraphenylporphine was
again based on an experiment performed in a different laboratory (25).

the I ll NMR spectrum of 102-reit ted cis-PBII (Fig. 11) offers additional microstructural infor-

mation. Besides the 2. 1 (-CII_C-) and 5,4 ppm (-CII n ) resonances of the unreacted cis-PHI', the

spectrum shows a broad}esonance centered at 1.7 ppm (.CII;- -O-) and other new resonances at

1.8 (= -CH;-ci• ), 4.3 (.CH-O-), and -.N ppm (- -OOH). Characteristically, the 7 • 8 ppm peak can
be removed by washing, the I ll NMR sample with	 11;0.

Typical 13C NMR spectra of 1 0 2 -reacted cis-PRI), before and after reduction, are shown in
Fig. 1.' (35). Substitution of -()If for -OOH shifts the 6 peak at 8o ppm upfield by 13 ppm (to
S'), and the Y peak at 34 ppm downfield by 5 ppm (to r'), displacements which reinforce the
assignments given. Similar upfield shifts of tit:-14 ppm were rioted earlier for the analogous

BD
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I
-^-0- resonances in 102 -reacted PIP (Figs, 5 and 6) or SQ (Fig, 7). Not surprisingly, Fig. 12I1
shows only one resonance for -^-0011 and only one for -;-011, not two resonances (^-5 ppm apart)

for each of these carbons; this is in line with our observation that the shifted double bonds
in reaction 13 have but one isomeric form, namely, trans. Likewise, the 13C spectra of 1 0_-
reacted trans-1181), before and after reduction (11), displayed a single 6 peak (at 66 ppm) and
a single 6 1 peak (at 72 ppm), in accordance with the trans-only nature of the shifted double
bond. Furthermore, Fig. 12 contains no unassigned resonances indicative of the endoperoxides
(reaction 11) proposed by Kaplan and Kelleher (29) for 1 0 2 -reacted PBD; as we saw earlier,
such structures were dismissed on the basis of model compounds (8,9,14,15).

1 , 2-POLY(l 4- 1 lEXAD I ENE)  S

Having examined the singlet oxygenation of PIP and PBD, polymers with C=C bonds inside the
main chain, we now consider two polymers, with C=C bonds outside the main chain, which are
quite reactive towards 1 0 2 (17), These -17 cis and trans forms of 1,2-poly(1,4-hexadiene)
(PHD) derived from stereospecific 1,2-polymerization of cis- or trans-1,4-6xadiene:

1

1	 2 3	 4	 5 6
CH2=CHCH2CH=CHCH3

4-cis (or trans I

_t —CH2—CH,.....

CH2

CH

CH

CH3

(14)

cis- (or trans) PHD

The cis contents in these polymers were initially 90.2,. and 3.8', respectively. On NIB-photo-
scusitized oxidation, cis- and trans-PHD yielded allylic hydroperoxides accompanied by double
bond shifts to new vinyl and trans vinylene units via reaction 1.

The important IR changes observed for the cis-PHD- 1 02 reaction (Fig. 13) are decreases of the
14,4- and 6.1-;,m bands (both due to cis -CH=CH-), increase of the 10,4-um band (trans
-CH=CH-), growth of the 10.9- 1;m band (-Cll=Cll,), and development of the strong 2.9-um band
(0011). The product shown in Fig. 13 contained 0.32 0 2 /monomer unit and had an A' = 0.78.

The IR spectrum of 1 0 2 -reacted trans-PHD (Fig. 14) similarly shows new hands at 2.9 and 10.9
um, but no change in intensity of the 10.4- 1,m band nor a new peak at 14.4 11m. Thus, once
again, the shifted vinylene double bonds are virtually all-trans. The product shown in Fig.
1-1 contained 0,30 0 2 /monomer unit and had an A' = 0.34.

Figures 15 and 16 show the 13C spectra of 1 0 2 -reacted cis- and trans-Pill) with assigr.nents of
the important peaks (17). The two peaks labelled 1 C and I T in Fig. 15 (cis and trap.

C_1l 3 -CH=C1i-, respectively) were present in the spectrum of the initial cis-PHD where they had
the same ratio of intensities as indicated here; no 1C peak is present in Fig. 16 but it was
barely detectable in the spectrum of the initial trans-PIID. These 13C \N1R results conform to
the expected absence of cis-trans isomerization of the original -01=01- double bonds in
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Fig. 13. IR spectra of cis-PHD before (---) and after (—) NIB-photosensitized oxidation.
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I rom the foregoing. it w.,ul,l be expected that ne.trl, all hvdrocarbon pohmcr% contatnlng di-,
tri or tetrasubstItuted Joublo bond., either to the backbone or to sidechatns, could rea,•t

with :0	 Among the pol ymers which fall tilt,, this broad category are various butadiene or
ts0111,e11e copol)•mors. 	 Rabek and R1111w (1,1:1 recently reported on the dye photosensiti:cd
oxid.ttton Of a t+uta,lienr-styrrnr c01+01ymer (SHRi and a polyst y rene-{a+lyhuta,lirnr block copoly-
mer (Solprene). file changes Observed in the IR spectra of these copolymers after treatment
with 1 0 wrre attributed to chan lles a s sociatt-d with singlet ox y genation of tilt- butadiene
amts, the styrene units t+einh Inert.

linally, we may note that an IITM synthetic rubber, comprising ethylene. prol+ylene and
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ethyliuc•ne norbornene, can also react with 10; through tit-- Involvement of it, pendout double
(-Onds 001

H
102 —	 —	 lla)

Nt

^?	 I

kea:tion It, is .tit interesting ex.nnplc Of .1 singlet ,n,gen.ltion of an unsaturated pol% pler which
coal fund practical application instead of bring deletert.nis. in this rase, treatment of 11,11161
with 1 0• cause, this el.l,tomel . to have improved self .edhesion or tack, an important propertl
affecting its use 111 ruhber technology (41).

kiNl''I'It'S OF PI101'OSINS111:FU OXIIIAIION

Me photosensrti:e.l oxidation If %serious unsaturated polymers cull he deseribe.l by the kinetic
,0tvmv est.lhllshed for p imple olefins (19, ;9 ,4. 1'
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where ti Is sensitizer and It is .Inceptor.	 Ire sensitI:c• r, with triplet energ, in excess of
kcal mole, such .IS I'[- (3:,01, MN (.4:,0) or RP II'.0 kcal'molel, the energ y tr:ulSfer

reaction 1'h Is ver y efficient.	 Stea.l y -state tre.itment Of feacttrns 1'a•d leads to
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"here . aenotc, gii-iiitulti ,told.	 For an acceptor which I, sufficiently reactive and/or is at
high enough c,•ncentr.itit'll to yurnch or react wtt1..01 the to. before it decays to the ground

State, k ,: JAl	 it,,, and the react ton Is :ero order in acceptor.	 This situation obtains with

MN-photo,en,ittred Oxidations of CIS .11111 trans forms of I'll'. 1911' .111.1 I'Ill l , aS "Idt• nced b y the

typlcaI ,traIghI lino plots shown to IIg. li t ,	 1'he coml,.irati%c kinetic runs wore carried ou
under Identic.11 :on,lition, of vislhl y light trradlatIon, and of sensiti:er .ind pol,mev con-
centr.,tion, in .. I hell:one nieth.unol solution, using the procedure .Ie,crihed (I0,I').

1 nctntbc • r of kinetic plot. ,InnLu to those in Fig. Ia were oht.itned for each of the unsatu-
rated pol ymer, •t11died to this Llboratory; the average lalovs ofthe slopes of such plots
were 11+Od to obt.tin relative rate :on,tants fill their reaction; "till I II,, its summari:ed in

I'.ible	 ]'tits table also :ontaln; corresponding literatitt •e data for various simple olefinic

,analog,, and for ,c%vral ^,olyme • rs ludlvd else"here.	 Iho rate constants, k r , are expressed

relattle to th.it for cis I'll' (k r = I.w. while• the kr' lalue, are rel.,tlte to that for
txthy l -:-prntenc ( kr'	 1.111•

As m y be seen tram Iahle :, the relative r:•activitie, towards 1 0; for the unsattn •ated poly

itx• rs Are sinnl.ir to those for their simple r"mo-olefinic counterparts. 	 Phis reinforces the

vie" developed an spe:tro,coplc grounds that the mechanisms fill' ,tngle•t oxygenation are full

,univittalit the same for the two classes Of
` 

• ,w,pollll,l;, hheve dll ' tereticc< arise • these must he
due to secon.lary processes Occurring in tit,- 	 pol y mers or to interact'i,ns

het"een pol ymer and sensitizer.

1 1 1A RAUAl ION Al 11 \DING SINGLIJ 0\)Cl \Al'ION ill' UNSANKA1FU POIAMI RS

S

ending upon the react tan condlttons. singlet oxygenation of unsaturated pol ymers mad `.:
omp.tnied In either extensile legra,lation or ,cal-cel y any.	 Thus, d y e-photosonsiti:ed oxidla-

tt,.n ul S01111 it'll. beside, ,welding all y lic hvdroperoxides with <hlfted double hands .according
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Ix

to react Ion 1, r.I% found to cawty sharl, decreases tit viscosity or n%,lecul.ir weight + 'f
PRI1 (1 -1,,1:,3	 n:,331, 1 ,widtee-st y rent- c,gatlyma• rs (1,1:) and 1'11` 11W. on the other hand.
hydroperoxidation of cis- and , rams-PHI + in solution, %tilt I ts, produced in situ frost. ilicrnuil
dec Onilhlslt lOn of triphenylphosl'llite o:,'nide. ga ve rise to gelled l+olvwrs, more so lu cis
th.ul In trans-1`111 1 . Nut tit neither Itolvnier was there chant scis+ion (::,: i i .	 111e gelat l n %.Is
ascribed to form,ttton of lie roxiat- I , ridgcs resulting from partial dv.omi,osition of tilt- lildro-
peroxides.	 In contrast to singlet oxygenation In solution, thin 1`11ms of I'Hl 1 (::,SC, Q. 33)

and I'll' (a,',1/'1 exposed to 1 0, generated to the 1 :. I , phase Nv mien'%arc discharge, .Ire hydro-
peroxidi:ed ..t the surface only and experience no it-gradation. llowever, the 1 0 , -treated films
.ire unstable .Ind displa y pronoutwed autoxidation when livated in air abo%v ' 100	 (::,tU,.i:, .tl
these same films, in the absence of air and put into solution, undergo chain scission %hen

Irradiatcd with near ill light It ' It' , 1S1 • 	these effects, which are also observed for 1 11 .

reacte,l pol y mers obt.0 neJ 1 1 t• d1e photosensitization (',Ir,,3'l, .Ire a consequence of the facile

thermal or phot tihemlial Jec ompo •i ltioii of the polywr-Wil group.

tale sharp decrease in viscosity of cis- and trans-1`111 1 i.ith time of .l ye-photascnsitized oxida

till In ben:cne methanol solution (sec Fig. 2 In Ref. Il irnol\id ;on:onntant chain scission
and :I-o"Illiking (l,l: 	 lilt- chain scission %as Jut- neither to ,lima salon of Its, an th'I
pol ymer nor to lilt,, t odc;ompo s 1 t Ion it the hv,l ropt • 1.0\Ides sIit{t' Slit' latter d0 not .IN, orh the
y tsll'Ic light usrJ lit the liliotosrnsitI.;tIon	 Iitst yaJ, on tho• Nasts of .lit ISR and 11% spectro-
<co1+IC study of the phot0induceJ III C.1. • hing I'1 NH, Rahet till k.urbv (1,1+1 concIilded that chain
scission was t:tn • to free r.kdicals formed tin the Ill-ir • radi.ite.I !IN-mrth.utl'1-brn:rnt • phatrsrtisl-
II.ing sy.tem. Such radicals, of course, could abstract hytlrogen from the polymers, therel'y

crndrrulg them , rn to .wtoxidati yr chain scission in the presence ofground state oxygen 1:')

llowe\er, e\rn will i decrease in Intrinsic viscosit y of I'H11 Ny a factor of .ni l -IS (1,1,::,33:.
the resulting h

,
drol roxiAi.ed pol\ilier chants would till lie sufficientl y 'macrumolr:ular' to

Mike it di ff tcuit , if not Impossible. to detect .iutra1,11: Vd end groups in the IR. 1 11 or I it'
\MR sp y ct r.1.

1\t' also A—cr%ed .I sharp decrease in cis:osit\ of PPI 1 for I'll') during singlet o\vgenatlon in
hen:ene-methanol solution using SIR or Itlt as photl'st'nsitt:Cr 13'1. tin the other !rand, %hen
hell:ene-soluble it was used, obviating the need for methanol in the pol%mer srn s iti:vr solu-

tions, no dect'caue to \tscosity occur'r'ed; instead 161 1 or I'll' Nrcamt- soma • %hat t:rllrll after
extensile ox y gen uptake (3') •	 Ilowever. tilt- proJuct : obtained %ith Cl. at, 43 1'hotosrnsit i:.It ion,
Liesl,tte tint' III fterent \Iscostt y effects, here spectro•:opicaIIy indistinguts'tal'Ie, .utd ke
Chose not to pursue the question at' m'IrOUl.ir %right .!:.lilacs atteutling the I'hotoscnsitt:ed
\idation,

:though hylltupato\t.lrs are the main c:nrirrs I't' the ;di,,toa\I.LIt1rc 01.1111, their .lrcrmpusttioii
vs not trl+rrsrnt an rffi:lent mrch;tntsm for main chillis:isslon IU,', 	 Tills %..o- Jerm,nstrated

i-v %,: .Ind 61111let (b, - ,lal in the near-111 photol ysis of cis-I'IP hydropy ro\tde (1'li`IIi in solu-
t il , i; to tilt' ab'encr of oX%gen. PIPIT %as prepared %ith different \toll contents Ny reacting cis-
I'll' with I li produced b\ mi:roka%e discharge of dra •,'hotosensit i s at ion, 	 The quantum \ ields
for h yaropero\ III V deil'mp0SiIi011 and chain scission, tatulI Anil : s , respeCtI\rly, wer e 1,01111d tit
depend on t1i111 content, sol'.ent, .inJ %a yrlrngth anll uttt • nslt y of 1 t 1 ralliatton, Nut the ; 	 :ttitli
rites maint,iined an .y'l+ro\in,atrl+ constant \.title "f 0,1 1 11. 1111' t •.rther lo% \slur %as to
.,c:ord %itlt th, • ptoposrll mechanism invol\111g photoinduct• J rupture of the 110-011 bond (kith
primary quantum y ield . tl - S1, free radical induced :h.tu1 decomposition of the 80011 groups
(kith o\er.Ill !t>tgt of the order ai ; t, 1 S1, and subsequent	 .ctssion of tilt- macroalko\
raJ1:a1 intermediate, Rtt • (kith vs of the order of till; to U.II, in compct it loin %lilt hydrogen
:INstraOtiI'll Ny that radical. 	 Ihrse results indicate that ' 0 . pl.tys .t minor role in the
photoo\idati,vt of polvmrrs, limited mainly to the tultlation process and contributint:

indirectl y to the chain scission.

COO HISIts\

I'he photosensitized oxidation or singlet o\\geuation It* various ltnsaturatrd h y llro0,lr I 'll n poly
file I" follows the same rnr-ty) IV react ton, Ieadill to .111 y 1(i hyJroperoxides and shifted 'bnlblr

Noiids, as do their simple olefini0 counterparts. 	 1lthough tilt, pol ymer-'O . reaction does not
directly cause degradation (chain scis'ton and'or :rossl inking) I the resulting polvnieric
hy,lt•operoxtdrs are wistable, espvciall y %hen dried, and %:an degra,le .0 a ;onsequencv of
incidental thermal or I'ltotochernical decomposition of RA)II groups, 11rgradatton i,o\ also
accompan y tlte ' l y r-I+hoh,s ynsltt:r11 oxidation in solution to the e\tvnt that the irradiated Jyr.
or radicals gvnvratvd from it, :.in att,wk the dissol\ed polymer.

It Loo%lef t:na• nt - Ilit• author • e\I , ress y s Iris ipprvc tat ion to DI-. R. I t 	 6viumer
:kit 'r ^(r. N1. l , Rosenberg for their \,:liable contributions to the singlet
oxygenation studies carried out in tills laborator y and :1te-i in the

rrfrrrn:cs,
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